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ABSTRACT 
 

The mode of action of the unsaturated organic addition agents used to produce semi-bright, sulfur-free nickel and sulfur-
containing bright nickel is considered from the point of view of their molecular structure and the lattice structure of the nickel 
surface acting as a hydrogenation catalyst.  The possible mechanisms of hydrogenation are outlined.  The relationship of various 
anions, boric acid, carboxylic acid buffers and the pH of the bath to the effectiveness of the addition agents is discussed.  The 
role of molecular inclusions derived from the addition agents is considered for single and multiple-layered plates, as well as the 
role of inclusions deliberately codeposited as fine non-conducting particles with the nickel to obtain maximum corrosion 
resistance with minimum thicknesses of nickel in decorative copper-nickel-chromium plating. 
 
The use of organic compounds as addition agents in aqueous electroplating baths is a fascinating field, owing mainly to 
interesting and important effects produced on the growth and structure and thereby on the character of the deposit by very low 
concentrations of the additives in the bath.  The striking effects on electrocrystallization processes of small concentrations of 
addition agents point to their adsorption on a high energy surface and deposition on growth sites, thereby producing a poisoning 
or inhibiting effect on the most active growing sites.  It is for these reasons, “the effects seem to be out of proportion to their 
concentration in the solution.”1  
 
In this paper, the unsaturated organic addition agents which produce semi-bright and bright nickel plate will be discussed with 
respect to their molecular structure, and the adsorption, hydrogenolysis and hydrogenation reactions which take place with the 
freshly depositing nickel acting as catalyst.  The effect of the addition agents on the corrosion resistance of the nickel plate with 
and without the usual thin final chromium plate will be detailed from the standpoint of the nature of the inclusions incorporated in 
the plate from the additives and from the changed structure of the plate, as well as from purposeful inclusion in the plate of 
multitudinous very fine dispersed non-conducting particles. 
 
The key to modern bright nickel plating was the discovery of the conjoint use of an organic “carrier” brightener with an auxiliary 
organic compound (critical in concentration compared to the carrier) that produced brightness and leveling in their conjunctive 
use.  In 1936, the commercial use was started of an aromatic sulfon-compound (p-toluene sulfonamide) together with an 
unsaturated aldehyde as the brightening system in a Watts nickel bath.  By 1940, it was recognized that unsaturation was an 
essential characteristic for the effectiveness of the aromatic sulfon-compounds (sulfonamides, sulfonimides, sulfonic acids), and 
also for the effectiveness of the auxiliary cooperative brilliancy-imparting agents (later called leveling agents) in the production of 
brilliant, ductile, leveling nickel plate from weakly acidic nickel plating baths (see the Appendix). 
 
The carrier nickel brightener which is invariably anionic (through the presence of sulfonic, sulfonamide, sulfonimide or sulfinic 
groups) and which is practically non-critical in concentration will be considered in relation to its conjoint use with leveling 
brighteners.  The latter are often cationic or if seemingly not at first glance, have a functional group which can be polarized in the 
cathode film to produce an electron deficient (therefore relatively positive) atom in its structure.  These leveling agents if strongly 
cationic are critical in concentration and cannot be used alone in the bath, but if very weakly cationic in nature are less critical in 
deleterious effects on ductility and adhesion while still producing optimum leveling effects, and certain ones may be used alone 
for semi-bright nickel plate.  Thus, it has been interesting to study single addition agents of each class, but even more so, the 
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cooperative effect of two or more additives from each class.  This resulted in the finding that an organic addition agent with one 
type of functional group can cause an increase or a decrease in the codeposition of another organic addition agent with a 
different functional group.  These cooperative effects are not only very important for obtaining maximum brightness and leveling 
with minimum loss of ductility, adhesion and other important properties, but as will be seen, by full utilization of combinations for 
their individual good points in multiple-layered plate, have made possible maximum corrosion resistance with minimum 
thicknesses of nickel plate.  The mode of action of the brighteners for acidic nickel baths will be considered not only in terms of 
the molecular structure of the organic addition agents but also in relationship to the anions, buffers and the pH of the bath.  
These factors affect the adsorption characteristics of the organic compounds with respect to the metal deposit because they 
affect the structure of the double layer.  For example, the unsaturated carbon-to-carbon linkage may be considered to be, when 
undisturbed, non-polar.  However, the π-electron cloud of the unsaturated bond can become polarized in the strong field of the 
electric double layer.  This polarized bond, or activated linkage, can then be attacked by hydrogen ions, (Fig. 1) as well as have 
its adsorption characteristics modified by an extremely thin (perhaps monomolecular) nickel hydroxide membrane forming across 
the cathode surface during the nickel plating.  This will be further discussed under leveling agents.  

 
Figure 1 - Possible mechanism of hydrogenation of unsaturated bonds in the cathode double-layer. The normally non-polar 

bond is polarized in the strong electric field and is adsorbed.  Hydrogenation proceeds by electron transfer 
from the cathode and hydrogen ion addition as shown.  See Burton and Ingold, J. Chem. Soc., p. 2022 (1929), for 
discussion of the mechanism of hydrogenation of unsaturated compounds with a metal and acid. 

 
Brief review of the past 
 
Probably the first addition agent ever used in plating was, surprisingly, carbon disulfide in alkaline silver cyanide baths in 1847 in 
England.2  Another old and very important and versatile addition agent is glue which has had widespread use starting around 
1900 in electrorefining, (acid lead and copper baths) and electrowinning (acid zinc and cadmium baths) and is an example of one 
of the most successful uses of an organic addition agent in electroplating.  Its important technical effects led to many early 
studies3 on the effect of gelatin (glue) on cathode polarization, cathode efficiencies, increased smoothness and densification of 
the plate and minimization of nodular growth and treeing (dendritic growth). 
 
Of the early papers on addition agents one of the best and, most perceptive was that of J.A. Henricks,4 who in 1942 saw the 
importance in a brightening mechanism of an organic addition agent working in conjunction with an inorganic colloid (hydroxide 
formed) in the cathode film.  He also classified anionic and cationic brighteners and was the first to point out that corrosion 
inhibitors could function as brighteners through an adsorption mechanism probably similar to that which often occurs during the 
corrosion inhibition process with the same inhibitor.  He also mentioned that the inhibiting effect in plating would be toward 
restricting or hindering the perpendicular grain growth of the depositing metal.  This does not mean, of course, that the best 
inhibitor for the acid corrosion of iron would necessarily be the best nickel or iron plating brightener, but was suggested as a 
guide to the selection of materials for initiating studies. 
 
In the early development of addition agents for bright nickel,5 the work of Schlotter in Germany, of Pine and Lind at Harshaw, of 
Weisberg and Hinrichsen was very important in the commercial growth of bright nickel plating during the years 1934-40.  The 

\         / 
 C = C 
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work of Clifton and of Waite and Martin6 on suitable surfactants for anti-pitting agents in nickel plating was also of great 
importance.  The use of bright nickel plate in 1940 before the second world war broke out was very widespread, but during the 
war bright nickel plating practically vanished.  After the end of the war in 1945, there was a very rapid expansion of bright nickel 
plating, and the addition agents that made it possible began to receive attention from many workers.  As is now very well known,7 
the work of Edwards on the mode of action of addition agents in nickel plating has been outstanding as has been the work of 
Gardam, Watson, DuRose, Kardos, Fischer, Raub, Beacom, Trivich, Rogers, Ibl, Epelboin, Kruglikov and their co- workers.  
Kardos7 and also Ibl7 have recently definitively reviewed the great mass of work in this field.  The fate of an adsorbed addition 
agent depends on the pH of the nickel bath as well as on other entities, buffers for example.  At bath pH values of about 1.5, 
Rogers and Taylor7 have shown that the leveling type of addition agent is reduced to a species different from that formed at pH 
values of about 4.5.  The percentage of inclusion in the nickel deposit derived from the addition agent also depends on the pH of 
the bath, as does the leveling.  
 
It was known before 1941 that sulfide sulfur8 was present in the nickel deposits from baths using aromatic sulfon-compounds, 
and it was also known that carbonaceous material was present in the plate from non-sulfur containing brighteners.9  With the 
discovery that unsaturation was a very significant characteristic of the structure of the compounds which produced brightness or 
leveling, it was logical to assume that the freshly depositing nickel was probably functioning as a hydrogenation catalyst similar to 
Raney nickel.  Thus, the possibility existed of reduction of oxygen-containing groups such as the aldehyde group as well as 
hydrogenation and hydrogenolysis reactions. 
 
With the realization that the depositing nickel was functioning as a hydrogenation catalyst,10 the question occurs concerning 
“active catalytic sites” on the cathode surface.  In the study of formed or prepared nickel catalysts, the old idea of “active sites” 
was always mentioned, and these sites are now better understood to be lattice distortions and imperfections, such as edge 
dislocations, screw dislocations, point defects such as vacancies, the presence of interstitial atoms, etc.  There is also the fact 
that one face of a nickel crystal may be much more catalytically active than another due to its different lattice spacing.  The latter 
is also controlled by electronic factors such as the partially filled d-bands, that is, by the vacant atomic d-orbitals present in 
nickel.  Films of nickel which preferentially exposed (110) type planes were found by Beeck, Smith and Wheeler11 to be five times 
as active in vapor-phase hydrogenation of ethylene as non-oriented films which were considered to be composed of 
approximately equal amounts of (100), (110) and (111) type planes.  The (110) planes in crystallites of nickel contain the 3.51 Å 
spacing which presumably would result in a lower heat of adsorption for the ethylene (the C = C bond distance is 1.34 Å) than on 
the 2.48 Å spacing.  Thus, the 3.51 Å lattice spacing would have higher catalytic activity for hydrogenation of aliphatic carbon-to-
carbon unsaturated bonds.  Whether the hydrogenation of double or triple bonds during nickel plating proceeds by attack by 
atomic hydrogen at the cathode surface (Fig. 2), or by hydrogen ion attack of the unsaturated bonds polarized in the strong field 
of the electric double layer, or both, is not determined. 
 

 
Figure 2 - Possible mechanism of hydrogenation of an adsorbed unsaturated linkage by atomic hydrogen dissolved in the nickel 

cathode or by nickel hydride.  The dashed lines indicate π-electron bonding.  However, since electrons and protons 
are involved in the cathodic reduction, the question of whether the addition of the electrons from the nickel cathode is 
directly to the adsorbed polarized highly electron-conducting unsaturated molecule (Fig. 1), or first to the hydrogen ion 
forming atomic hydrogen or hydride ion (if two electrons are added) for the reduction step, is not easily answered. 
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small effects.  This brightening process is not very significantly pH-dependent in the range of about 2.0 to 6.0.  There is some 
temperature dependence when the baths are hotter than about 80°C, which varies with the type of un-saturated sulfon-
compounds.16  The beta-unsaturated sulfonic acids, 2-propene-l-sulfonic acid and 2-propyne-l-sulfonic acid, do not lose as much 
of their brightening action at the higher temperatures compared to the aryl sulfonic compounds.  The effect of pH of the bath on 
the sulfide sulfur content of the nickel plate with the alpha and beta unsaturated aliphatic sulfonic acids present in the bath is in 
the opposite direction compared to the simple aryl sulfon-compounds.  With the latter, decreasing the pH from 5.5 to 2.0 causes 
an increase in sulfur content of about 0.03 to about 0.04% at bath temperatures of about 60°C, whereas with the alpha and beta 
unsaturated sulfonic acids, the same decrease in pH causes a decrease in sulfur content.  The decrease may be from about 0.06 
to about 0.01% sulfur and depends on the structure of the various alpha and beta unsaturated sulfonic acids.  The variation of 
the sulfur content of the plate with concentration of sulfon-compound in the bath follows closely the form of an adsorption 
isotherm.  Carbonaceous material in low percentage is also usually found in the plate, but it is also usually found in nickel plate 
from the plain Watts bath.  The latter needs to be checked with the Watts bath in the complete absence of CO2.  The best 
evidence indicates that if carbon is present from these benzene and naphthalene sulfon-compounds, it is present in very small 
amounts.  However, in the case of the beta unsaturated aliphatic sulfonic acids as the only brightening additive, both sulfide 
sulfur and carbonaceous material are found in the plate.17   
 
After electrodeposition of nickel has proceeded for several hours with the aryl sulfon-compounds present in the bath, the odor of 
free benzene and naphthalene can easily be detected from the baths containing the corresponding sulfon-compounds.18  The 
evidence for the hydrogenolysis of the aryl sulfon-compounds at the nickel cathode is clear.  That is, benzene (or naphthalene) 
and sulfurous acid (or its nickel salt) are probably first formed by hydrogenolysis at the nickel cathode and the sulfite ion or nickel 
sulfite is there reduced to sulfide.  In the case of benzene sulfonamide, hydrogenolysis would yield, beside benzene, transitory 
amidosulfinic acid.  Benzene sulfinic acid would yield transitory sulfoxylic or its nickel salt.  These steps would be followed by 
reduction of these unstable acids or more probably their nickel salts to nickel sulfide.  The hydrogenolysis reactions in their 
simplest forms would be as follows, with the benzene sulfinic acid the easiest to reduce and the benzene sulfonic acid the most 
difficult: 
 
Hydrogenolysis at the nickel cathode  
 
 C6H5 - SO2OH + 2H  C6H6 + HSO2OH     (1) 
 
 C6H5 - SO2NH2 + 2H  C6H6 + HSO2NH2     (2)  
 
 C6H5 - SOOH + 2H  C6H6 + HSOOH      (3) 
 
The hydrogenolysis does not affect the unsaturation of the benzene ring.  The C-S+ bond is activated by the oxygen atom and 
the π-electrons of the aromatic unsaturated linkage in alpha position to the sulfur of the sulfon- and sulfin-group.  This alpha 
unsaturation is, however, part of three conjugated double bonds of the cyclic aromatic system.  This involves six delocalized 
electrons (6 π-electrons) which make all bonds of the ring of the same length, thus stabilizing the ring by resonance; and this is 
apparently why the sulfur content of the plate from the aryl sulfon-compounds increases with lower pH values of the bath.  At the 
lower pH, more hydrogen is available at the cathode, but for hydrogenolysis only.  If the pH of the bath is lowered to about 0.5 
(cathode efficiency about 70%), the brightening by the aryl sulfon-compounds is confined mainly to the lower current density 
areas.  Bisulfite added to the Watts bath does not produce appreciable brightness even though by regulation of the 
concentration, exactly the same amount of sulfide can be included in the nickel plate as with an aryl sulfon-compound.  This 
shows that mere sulfide inclusion is not the cause of the bright plate with the aryl sulfon-compounds.  In fact, if about 1 g/L of 
sodium bisulfite, or sodium thiosulfate is added to the nickel bath about 0.65% sulfur is incorporated in the plate.  With this high 
sulfide inclusion, unlike with high carbonaceous inclusion, there is no tendency for the plate to exfoliate.  This may be due to the 
possibility that the nickel sulfide may, in part at least, be an alloy and have metallic conductivity.  With the presence in the bath of 
0.5 to 1.0 g/L of sodium bisulfite or thiosulfate, the brightening effects produced by the aryl sulfon-compounds as well as by other 
brighteners are almost completely eliminated. 
 
Tests with sodium thiosulfate, in a concentration of about 0.03 g/L alone in a 200-L warm Watts bath, pH 2.5, often show a patch 
of brightness on a large smooth basis metal cathode that is similar to that produced by the aryl sulfon-compounds over the entire 
cathode.  These patches of ductile bright plate may persist even in 25 to at least 75-μm thick nickel deposits, but these patches 
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of bright plate are in general fleeting and difficult to obtain in small scale plating tests.  The above concentration of thiosulfate 
puts about 0.03 to 0.04% sulfur in the plate, similar to the percentage of sulfur included from the aryl sulfon-compounds.  There 
is no evidence that the aryl ring of the sulfon-compound is hydrogenated at the cathode, nor are there any mercaptan-like odors 
on dissolving the nickel plate in hydrochloric acid containing a trace of platinic chloride.  
 
If benzene sulfonamide is dissolved in water containing Raney nickel catalyst and also boric acid, the Raney nickel catalyst does 
not show the formation of nickel sulfide.  It does show the formation of nickel sulfide when sodium bisulfite or sodium benzene 
sulfinate is added instead of benzene sulfonamide.  Another interesting point is that the plain aryl sulfonic acids and 
sulfonamides do not produce bright plate in the high chloride acidic nickel baths.  By introducing more strongly unsaturated 
groups on the aryl ring than just the aromatic unsaturation of the benzene and naphthalene rings, then brightness is also 
obtained in the high chloride baths.  For example, o-benzaldehyde sulfonic acid, o-benzoyl sulfimide, p-vinyl benzene sulfonic, 
also p-cyanobenzene sulfonamide give brightness, but with the latter, the plate is very brittle.  2-propene-l-sulfonic acid, 2-
propyne-l-sulfonic acid (0.3 g/L), 2-butyne-l, 4-disulfonic acid or 2-cyanoethane-l-sulfonic acid also give bright plate on polished 
surfaces in high chloride baths as well as in Watts baths.  Pyridine-3-sulfonic acid (6.0 g/L) also gives bright plate.  Thiophene 2-
sulfonamide or 2-sulfonic acid at 0.3 to 1.0 g/L gives bright but very brittle plate from both Watts and high chloride baths, and the 
plate has a very high sulfur content, 0.4%.  Benzene and toluene sulfinic acids, added as salts, also produce brightness in the 
high chloride as well as in the Watts baths in concentrations of about 0.1 to 1.0 g/ l.  Also, they are unusual in that they produce 
bright ductile plate in straight acidic cobalt baths, though not in iron baths.  When these sulfinates are used in straight acidic 
cobalt baths of the sulfate-chloride type similar to the nickel baths, then the brightening systems of the nickel baths can be used 
to give brilliant ductile leveling cobalt plate.  Without the benzene or toluene sulfinates present, the acidic cobalt plating bath is 
more sensitive to the concentration of certain of the nickel brilliancy-imparting agents, and darkish plate is obtained.  However, 
this is completely overcome with the sulfinate.19  Nevertheless, rather high concentrations of cobaltous and ferrous ions may be 
present with the usual nickel brightening agent systems without impairment of ductility and brilliancy (actually there is an 
improvement of these properties) as long as at least about 60% nickel is in the plate. 
 
With the beta unsaturated sulfon-compounds, carbonaceous material as well as sulfur is found in the plate, and a faint 
mercaptan-like odor is noticed on dissolving the nickel plate in platinized hydrochloric acid.  When the pH is dropped to about 
0.5, the nickel plate is completely dull and there is practically no sulfur in the plate.  This is just the opposite of the aryl sulfon-
compounds.  It appears that, instead of hydrogenolysis, hydrogenation of the aliphatic unsaturated bond occurs predominantly at 
these low pH values.  Pure saturated sulfonic acids do not have any appreciable effect on the properties of the nickel plate.  For 
example, cyclohexane, ethane, propane and butane sulfonic acids do not put sulfur in the plate or otherwise noticeably alter the 
dull plate.  The beta unsaturated sulfonic acids are in part hydrogenated to the saturated sulfonic acid and in part 
hydrogenolyzed at pH values of 3.0 to 6.0.  If the unsaturated bonds in aliphatic sulfonic acids are present in gamma or more 
distant positions from the sulfonic group, no appreciable sulfur is found in the plate, and the type of brightness is not similar to 
the type produced by the beta unsaturated aliphatic sulfonic acids.20  When the unsaturated bond is in gamma or delta position, 
and especially when an ether linkage is present between the unsaturated bond and the sulfonic group, then while the entire 
molecule can be classified as anionic, nevertheless the unsaturated aliphatic group can be polarized to a dipole in the electric 
double layer, while the rest of the chain with its sulfonic group is outside the electric double layer most of the time.  The latter is 
about 3 Å thick21 whereas the molecule may be about 8 Å or more in length.  Aryl thiols (negative valent sulfur) show little 
tendency for cathodic C-S bond cleavage, also they do not produce appreciable brightness. 
  
Omega sulfomethyl naphthalene (5.0 g/L) has slight brightening effects in the Watts bath, which is better than the corresponding 
omega benzyl sulfonic acid, showing again the weakness of the aromatic unsaturation due to resonance, and also showing that 
the 1, 2 positions on the naphthalene ring have slightly more double bond character.  Of the plain aryl sulfonic acids, those of 
phenyl, biphenyl or terphenyl, are not as effective as those of naphthalene.  
 
The role of the chloride ion in the cathode film has not been sufficiently studied.  It does give a somewhat different nickel 
hydroxide precipitation curve with varying nickel chloride concentration compared to nickel sulfate.  It probably is important in the 
hydration coordination of the nickel ion, forming such ions as [Ni(H2O)5Cl]+l.  The plain high nickel chloride baths (above about 
150 g/L NiCl2·6H2O) give much more brittle plate than the Watts bath, and this indicates some modification of the nickel 
hydroxide film formed at the cathode.  Thus, the unsaturated compounds would compete with other adsorbed entities on the 
nickel cathode besides nickel hydroxide.  However, a 100 g/L NiCl2·6H2O + 40 to 50 g/L H3BO3 bath gives a plate as ductile as 
from a Watts bath.  Bromide ions in high concentrations give nickel plating results similar to sulfate rather than to chloride ions, 
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hydrolyzes faster in the bath, and the free acetylene dicarboxylic acid is very harmful to the plate, much more so than fumaric or 
maleic acids (see the Appendix).  Coumarin, with its beta-unsaturated lactone ring stabilized to acid hydrolysis through 
nucleation with the benzene ring and in resonance with it, has a fault that its main hydrogenation product, melilotic acid, as it 
accumulates in the bath, causes darkish brittle plate, especially in the lower current density areas.  However, the melilotic acid 
can be readily removed from the bath by activated carbon, which is not true for the simple aliphatic carboxylic acids.  Coumarin is 
weakly cationic in the nickel bath.  It is very soluble in concentrated sulfuric acid.  
 
When a benzene sulfon-compound is used in conjunction with the above beta-unsaturated esters or lactones, fully-bright, ductile, 
high leveling nickel plate is obtained.  However, a higher concentration of the beta-unsaturated ester or lactone must be used 
with the sulfon-compound to obtain the same leveling as when the unsaturated ester or lactone is used alone.  This is different 
than with most other unsaturated compounds when lower concentrations can be used conjointly with the aryl sulfon-compounds 
to obtain brilliance.22  In nickel fluoborate baths, the leveling is greatly decreased whether the unsaturated esters are used alone 
or with the sulfon-compound.  In the high chloride bath, used alone they cannot overcome the inherent brittleness of the nickel 
deposit from this bath when the pH is 3.0 to 6.0.  With the addition of a sulfon-compound which produces bright, ductile plate in 
high chloride baths, then fully-bright, ductile, leveling plate is obtained, but the plate now contains sulfur.  The exact nature of the 
carbonaceous inclusion in the plate from the unsaturated esters or lactone is not very well known.  Whether during adsorption on 
the most active sites during the plating at bath pH values of about 3.8 to 6.0 some free radical formation occurs with rapid 
dimerization or polymerization* to a larger molecule, or whether the molecule is incorporated without change on these active 
sites, is not established.  At lower pH values 1.5 to 2.5, the unsaturated esters and lactones are hydrogenated more rapidly, that 
is, more is consumed, and more breakdown products are left in the bath and yet much less luster and leveling are produced and 
less carbonaceous material is found in the plate.  Rogers and Taylor, in a very important work already mentioned, have 
investigated these phenomena with coumarin, butyne diol and propargyl alcohol, and found that the reduction went much further 
than just hydrogenation of the C = C bond when the low pH values were used.  The presence of buffers like acetates, citrates, 
etc., greatly decreases leveling in the nickel baths, even at pH values of 4.5 to 5.5, which are normally optimum for leveling, and 
this effect may be similar to lowering the pH of the cathode film.  These buffers unlike boric acid probably prevent formation of 
the thin nickel hydroxide membrane which influences the adsorption and reduction behavior of the unsaturated compounds. 
 

 
Figure 4 - Irregular surface channeling (striations) caused by absence of boric acid in the Watts bath when a leveling agent such 

as coumarin (left panel) or butyne diol (right panel) is present in the bath at pH values of 3.8 to 5.5.  The center panel 
is obtained with coumarin when boric acid is present in the usual formulation of the Watts bath. 

 

                                                 
* See G.W. Poling, J. Electrochem Soc., 114, 1209 (1967). 
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formation.  With the strong hydrogen acceptors, less nickel sulfide is incorporated in the plate, unlike with the strong cationic 
brilliance-imparting agents.  
 
The important fact of obtaining increased sulfide content of the nickel plate by the conjoint use or the aryl sulfon-compounds with 
the nitrogen compounds, and of making possible decreased sulfide content by using the short chain aldehydes makes possible 
the use of unusual multiple-layered nickel deposits for maximum corrosion protection of the basis metal, as will now be shown.  
 
Efforts toward maximum corrosion protection 
 
After it was found that sulfur-containing bright nickel with the usual thin chromium plate was not giving satisfactory corrosion 
protection to steel or zinc die castings in outdoor exposure in damp, cold industrial atmospheres compared to dull sulfur-free 
nickel with the same thin final chromium plate, it was thought that the answer might be a sulfur-free bright nickel.  Outdoor 
exposure tests were made with the bright side of a Watts sulfur-free thick nickel foil obtained by plating ductile dull nickel on top 
of a passivated bright nickel surface.  This thick Watts nickel foil with one side brilliant and one side dull was chromium plated 
with 0.25 μm of the usual final chromium plate on both the bright side and the normal dull side.  The foil was then cut into two 
pieces and each side was exposed in an industrial atmosphere for three years.32  The chromium plated dull side showed a dense 
distribution of fine pits.  The bright side showed much less dense pitting, but very large deep pits just as with sulfur-containing 
bright nickel.  Buffing the dull Watts nickel surface and chromium plating gave similar results to no buffing, that is, dense, very 
fine pitting with very little penetration downward.  These experiments pointed to the importance of the degree of porosity of the 
chromium plate, at least for static exposure in a damp industrial atmosphere.  
 
Meanwhile, the use of a high leveling, ductile, sulfur-free, semi-bright nickel became very prominent33 in the plating of automobile 
bumpers.  This plate was easily buffed bright and then chromium plated.  Later in order to eliminate the buffing step, sulfur-
containing bright nickel was applied on top of the semi-bright nickel in a thickness less than that of the semi-bright.34  While it 
wasn't apparent from static roof tests, the corrosion resistance performance on cars of this double layered nickel coating was 
superior to even the good performance of the chromium plated sulfur-free buffed semi-bright nickel.  This superior performance 
was manifested in cities that used salt to de-ice streets during the winter.  Further improvements were obtained by using a thin 
layer of nickel with a relatively high content of sulfur, sandwiched between the semi-bright and bright nickel.35  This three-layered 
nickel plate used a 50-50 ratio of semi-bright to bright nickel instead of the 70-30 preferred ratio for the double nickel.  
Finally, the porosity of the chromium plate received increased attention,36 and the first important result was the development of 
microcracked chromium plate.37  Next was the development of microporous chromium plate by plating the usual chromium plate 
on top of a thin bright nickel plate containing densely codeposited, extremely fine nonconducting particles.38  In this indirect way, 
the final chromium plate of 0.25 to about 0.75 μm thick is made microporous.  With highly porous chromium plate, the corrosion 
protection results with just bright nickel on top of a copper coating showed very important improvement (Fig. 6).  Using highly-
porous chromium on top of double nickel (50-50 ratio of sulfur-free nickel to bright sulfur-containing nickel), further improvements 
were obtained (Fig. 7), and still further improvements were obtained when using the highly-porous chromium on top of the triple 
nickel plate already described.  With the highly-porous final chromium plate, it has been found that copper is markedly beneficial 
as an underneath coat to nickel, and it is now possible to obtain remarkable results in the CASS, Corrodkote and the EC 
accelerated tests with much thinner total nickel plate than thought possible only a few years ago.  
 
Finally, by utilizing each of the properties of the unsaturated additives for nickel plating it is possible to almost hide the surface 
corrosion pits, after 100 hr CASS tests or five Corrodkote cycles, as shown in Fig. 8.  The semi-bright, sulfur-free nickel is 
followed by sulfur-containing bright nickel, which is followed by a thin nickel containing cathodic hydrogen acceptors (aldehydes 
and unsaturated non-sulfur containing compounds) to cause the final nickel which is bright to have an appreciably lower sulfur 
content derived from the organic sulfon-compounds than the bright nickel plate underneath it.  The latter has unsaturated 
compounds which promote increased sulfur content from the aryl sulfon-compounds.  The final thin bright nickel plate with the 
lower sulfur content also has preferably codeposited with it, multitudinous fine nonconducting particles (which were dispersed in 
the plating bath) to cause chromium plate to be micro-porous. 
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Figure 6 - Very small hemispherical corrosion pits (original magnification 500X) developing in the bright nickel plate underneath 

microporous chromium, after five cycles of Corrodkote.  The nickel is 25 μm thick.  Corrodkote results are excellent 
without the copper layer, but in outdoor exposure, copper was found to be highly beneficial under the nickel when 
highly-porous chromium was used on the bright nickel.  The best results are obtained with multiple-layered nickel 
plate as shown in Figs. 7 and 8. 

 

 
Figure 7 - Flat bottom surface corrosion pits (original magnification 500X) in the bright nickel layer and stopping at the semi-

bright, sulfur-free nickel and proceeding laterally after 100 hr CASS test.  Copper is underneath the double nickel 
layer and microporous chromium is on top of the bright nickel.  The total nickel thickness is 15 μm, the copper 10 μm 
and the chromium 0.25 μm. 

 

 
Figure 8 - After 100 hr CASS corrosion testing with a three-layered nickel plate (original magnification 500X) consisting of semi-

bright, sulfur-free nickel, followed by an equal thickness of bright nickel followed by a thin layer of bright nickel which 
has multitudinous, codeposited, very fine, non-conducting particles in its surface, thereby inducing microporosity in 
the final chromium plate.  The total nickel thickness is 15 μm, the copper 10 μm and the chromium 0.25 μm.  The 
section showing the hidden corrosion pit but no surface corrosion pit was not polished to the center as in the other 
section.  These surface corrosion pits require at least 100X to be seen directly. 

 
The road leading to developments in the decorative nickel-chromium plating field was long and arduous for both the platers and 
suppliers but the path was made much less rough by the fundamental work done in universities, and institutions such as the U. 
S. Bureau of Standards [now NIST].  In the fifth William Blum lecture,39 Dr. Wesley said, “Any record of the long struggle to 
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develop a science out of the old art of electroplating must be replete with references to the part played by William Blum.”  It could 
not have been better said.  
 
Conclusion  
 
If one principle could be emphasized from this presentation, it might be a doctrine of diametrically opposed alternatives.  For 
example: 

1. The sulfide-containing bright nickel corroded so rapidly under the usual final chromium plate that its use for severe 
outdoor industrial or marine exposure was not very satisfactory.  However, by utilizing an underlayer sulfur-free, bright 
nickel, this bad point was turned into a good point because of its sacrificial corrosion compared to the underneath sulfur-
free nickel.  Thereby, the corrosion pit is diverted laterally instead of rapidly penetrating to the basis metal.  Normally, one 
wouldn't think of using nickel as a sacrificial coating.  

2. Logically, it would first appear that crack-free, pore-free, that is, flaw-free, chromium on top of bright nickel would give the 
best corrosion protection results.  However, the best decorative bright chromium plate to apply over nickel for good 
corrosion protection turned out to be just the opposite, that is, a highly porous one. 

3. After all the admonitions to keep the nickel baths crystal clear and filtered continuously to obtain a nickel plate with 
optimum corrosion protection, it turned out that dispersing in the nickel bath of as much as 50 g/L of extremely fine, bath-
insoluble, nonconducting particles which codeposit with the nickel made possible highly improved corrosion resistance by 
indirectly making the top decorative chromium plate micro-porous.  
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Appendix 
 
The following are the first two pages of a U. S. patent application filed by the author on November 20, 1940 as Serial No. 
366,385. 
 
In these two pages there is discussed the cooperative effect of the aryl sulfon-compounds with bath-soluble unsaturated organic 
compounds to produce brilliant nickel plate.  Also, the harmful effect of certain groupings attached to a carbon atom carrying the 
unsaturated bond.  Later data40 by other investigators fully substantiate the findings given in these two pages submitted in 1940.   
 
"This invention relates to the electrodeposition of nickel from an aqueous acid bath.   
 
One object of this invention is to decrease the grain size and increase the luster of the nickel deposit. 
 
A second and major object is the electrodeposition of brilliant highly lustrous ductile nickel plate. 
 
I have found that these objects can be accomplished by the use of organic compounds carrying certain functional groups.  
 
The first object can be accomplished by the addition to the Watts type of nickel bath or its modifications, of certain organic 
compounds which contain unsaturated linkages, such as the aldehydic (and ketonic carbonyl), the olefinic type of unsaturated 
bond, double or triple, and the unsaturated carbon to nitrogen bond, double or triple, i.e.,  
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As time passed, his principal work became the development of organic addition agents especially for bright nickel plating baths.  
To this field he contributed the sulfonamide and sulfonamide “carrier” brightener system; the elucidation of unsaturation as one of 
the essential characteristics of the best organic addition agents for bright nickel plating, which devolved into the system of using 
an unsaturated organic sulfon-compound together with auxiliary unsaturated compounds which is the basis for all modern bright 
nickel baths.  He was the earliest to show that the premature outdoor corrosion failure of decorative nickel-chromium plate was 
not due to any inherent porosity in the relatively thick nickel plate, but was due instead to the inherent porosity of the thin final 
chromium plate and the galvanically induced porosity developed in the underlying nickel plate, and that a high density of pores or 
craze-cracks in the final chromium plate would give much better corrosion protection than a low density.  
 
In 1951 he suggested the development of the perfluoro alkane sulfonic acid surfactants for the purpose of suppressing acidic 
spray.  These unique surface-active agents which took three years to develop were found to be perfectly stable in the presence 
of strong oxidizing agents including the Pb-PbO anode used in chromium plating and the acid lead storage battery.  Other work 
involved the development of an indirect and novel method to obtain decorative micro-porous chromium plate by plating over 
bright nickel containing multitudinous co-deposited very fine non-conducting particles. 
 
Dr. Brown retired from Udylite in 1972, but continued to make many contributions to science for the rest of his life, including 
cancer research.  He died on March 15, 2001 at his home in Palo Alto, California at the age of 93. 
 
To this writer’s knowledge, Dr. Brown may be the only individual from our industry to be recognized, on the occasion of his 
passing, in a popular national newsweekly.  In the April 16, 2001 issue of Time, in the Milestones section, was the following 
obituary: 
 
DIED. HENRY BROWN, 93, chemist who discovered that sulfurous organic compounds could make chrome more brilliant; in 
Palo Alto, Calif. His innovation produced shinier faucets, sparklier bumpers and brighter pennies. 
 
Dr. Brown’s time was the era of bright decorative nickel-chromium plating for automotive bright work, the leading segment of our 
industry at the time.  The entire multilayer copper-nickel-chromium system was a critical technological achievement in those 
days.  Through his career, Dr. Brown’s intimate knowledge of the functions of organic additives in plating chemistries was the key 
to the development of brightener systems.  His was a unique and critical contribution.  This paper is a definitive summary of that 
important work. 


